What parameters of the neural network are responsible for the stability of behavior?
My training (not stable):
[INFO] Agent. Step: 3000000. Time Elapsed: 6701.190 s. Mean Reward: 449.745. Std of Reward: 464.177. Training.
[INFO] Agent. Step: 3030000. Time Elapsed: 6767.475 s. Mean Reward: 281.317. Std of Reward: 303.813. Training.
[INFO] Agent. Step: 3060000. Time Elapsed: 6825.893 s. Mean Reward: 1024.422. Std of Reward: 1616.215. Training.
[INFO] Agent. Step: 3090000. Time Elapsed: 6891.545 s. Mean Reward: 333.737. Std of Reward: 343.476. Training.
[INFO] Agent. Step: 3120000. Time Elapsed: 6961.993 s. Mean Reward: 529.770. Std of Reward: 438.336. Training.
[INFO] Agent. Step: 3150000. Time Elapsed: 7028.978 s. Mean Reward: 386.342. Std of Reward: 240.528. Training.
[INFO] Agent. Step: 3180000. Time Elapsed: 7089.501 s. Mean Reward: 1242.240. Std of Reward: 1191.351. Training.
[INFO] Agent. Step: 3210000. Time Elapsed: 7162.898 s. Mean Reward: 471.763. Std of Reward: 76.120. Training.
[INFO] Agent. Step: 3240000. Time Elapsed: 7225.747 s. Mean Reward: 392.818. Std of Reward: 510.116. Training.
and my networks params:
behaviors:
Agent:
trainer_type: ppo
hyperparameters:
batch_size: 2048
buffer_size: 20480
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear
network_settings:
normalize: true
hidden_units: 512
num_layers: 3
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.995
strength: 1.0
keep_checkpoints: 30
checkpoint_interval: 1000000
max_steps: 50000000
time_horizon: 1000
summary_freq: 30000
Thanks!