I have a 3d Perlin noise in C#, I would like to access it in JavaScript.
how do I access public static float noise(float x, float y, float z) in JavaScript?
using UnityEngine;
using System;
public class Noise
{
public class ClassicNoise
{ // Classic Perlin noise in 3D, for comparison
// Classic Perlin noise, 3D version
public static float noise(float x, float y, float z)
{
...
}
}
}
JavaScript:
function Start(){
var noisescript: Noise;
var noise :float = noisescript.noise(1, 2, 3);<<<<DOESN'T WORK
}
for reference, here is the 3d Perlin complete code EDIT -That DOESN’T WORK!! if you manage to correct it then please post the solution, for the moment only produces a periodic 2d pattern
using UnityEngine;
using System;
public class Noise
{
public class ClassicNoise
{ // Classic Perlin noise in 3D, for comparison
private static int[][] grad3 = new int[][]{new int[]{1,1,0},new int[]{-1,1,0},new int[]{1,-1,0},new int[]{-1,-1,0},
new int[]{1,0,1},new int[]{-1,0,1},new int[]{1,0,-1},new int[]{-1,0,-1},
new int[]{0,1,1},new int[]{0,-1,1},new int[]{0,1,-1},new int[]{0,-1,-1}};
private static int[] p = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
// To remove the need for index wrapping, float the permutation table length
private static int[] perm = new int[512];
public static void Init() { for (int i = 0; i < 512; i++) perm *= p[i & 255]; }*
// This method is a lot faster than using (int)Mathf.floor(x)
private static int fastfloor(float x)
{
return x > 0 ? (int)x : (int)x - 1;
}
private static float dot(int[] g, float x, float y, float z)
{
return g[0] * x + g[1] * y + g[2] * z;
}
private static float mix(float a, float b, float t)
{
return (1 - t) * a + t * b;
}
private static float fade(float t)
{
return t * t * t * (t * (t * 6 - 15) + 10);
}
// Classic Perlin noise, 3D version
public static float noise(float x, float y, float z)
{
// Find unit grid cell containing point
int X = fastfloor(x);
int Y = fastfloor(y);
int Z = fastfloor(z);
// Get relative xyz coordinates of point within that cell
x = x - X;
y = y - Y;
z = z - Z;
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
X = X & 255;
Y = Y & 255;
Z = Z & 255;
// Calculate a set of eight hashed gradient indices
int gi000 = perm[X + perm[Y + perm[Z]]] % 12;
int gi001 = perm[X + perm[Y + perm[Z + 1]]] % 12;
int gi010 = perm[X + perm[Y + 1 + perm[Z]]] % 12;
int gi011 = perm[X + perm[Y + 1 + perm[Z + 1]]] % 12;
int gi100 = perm[X + 1 + perm[Y + perm[Z]]] % 12;
int gi101 = perm[X + 1 + perm[Y + perm[Z + 1]]] % 12;
int gi110 = perm[X + 1 + perm[Y + 1 + perm[Z]]] % 12;
int gi111 = perm[X + 1 + perm[Y + 1 + perm[Z + 1]]] % 12;
// The gradients of each corner are now:
// g000 = grad3[gi000];
// g001 = grad3[gi001];
// g010 = grad3[gi010];
// g011 = grad3[gi011];
// g100 = grad3[gi100];
// g101 = grad3[gi101];
// g110 = grad3[gi110];
// g111 = grad3[gi111];
// Calculate noise contributions from each of the eight corners
float n000 = dot(grad3[gi000], x, y, z);
float n100 = dot(grad3[gi100], x - 1, y, z);
float n010 = dot(grad3[gi010], x, y - 1, z);
float n110 = dot(grad3[gi110], x - 1, y - 1, z);
float n001 = dot(grad3[gi001], x, y, z - 1);
float n101 = dot(grad3[gi101], x - 1, y, z - 1);
float n011 = dot(grad3[gi011], x, y - 1, z - 1);
float n111 = dot(grad3[gi111], x - 1, y - 1, z - 1);
// Compute the fade curve value for each of x, y, z
float u = fade(x);
float v = fade(y);
float w = fade(z);
// Interpolate along x the contributions from each of the corners
float nx00 = mix(n000, n100, u);
float nx01 = mix(n001, n101, u);
float nx10 = mix(n010, n110, u);
float nx11 = mix(n011, n111, u);
// Interpolate the four results along y
float nxy0 = mix(nx00, nx10, v);
float nxy1 = mix(nx01, nx11, v);
// Interpolate the two last results along z
float nxyz = mix(nxy0, nxy1, w);
return nxyz;
}
}
}