Hi,
I am playing around with the soccer game. I replaced the ray sensor with camera:
This is my training configuration:
behaviors:
SoccerTwosVisual:
trainer_type: ppo
hyperparameters:
batch_size: 64
buffer_size: 1024
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear
network_settings:
normalize: true
hidden_units: 256
num_layers: 2
vis_encode_type: resnet
reward_signals:
extrinsic:
gamma: 0.8
strength: 1.0
keep_checkpoints: 5
max_steps: 50000000
time_horizon: 1000
summary_freq: 10000
threaded: false
self_play:
save_steps: 50000
team_change: 200000
swap_steps: 2000
window: 10
play_against_latest_model_ratio: 0.5
initial_elo: 1200.0
However I am getting the following error:
Traceback (most recent call last):
File "/usr/local/bin/mlagents-learn", line 33, in <module>
sys.exit(load_entry_point('mlagents==0.24.0.dev0', 'console_scripts', 'mlagents-learn')())
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/learn.py", line 274, in main
run_cli(parse_command_line())
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/learn.py", line 270, in run_cli
run_training(run_seed, options)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/learn.py", line 149, in run_training
tc.start_learning(env_manager)
File "/usr/local/lib/python3.8/dist-packages/mlagents_envs-0.24.0.dev0-py3.8.egg/mlagents_envs/timers.py", line 305, in wrapped
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/trainer_controller.py", line 172, in start_learning
n_steps = self.advance(env_manager)
File "/usr/local/lib/python3.8/dist-packages/mlagents_envs-0.24.0.dev0-py3.8.egg/mlagents_envs/timers.py", line 305, in wrapped
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/trainer_controller.py", line 230, in advance
new_step_infos = env_manager.get_steps()
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/env_manager.py", line 112, in get_steps
new_step_infos = self._step()
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/subprocess_env_manager.py", line 264, in _step
self._queue_steps()
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/subprocess_env_manager.py", line 257, in _queue_steps
env_action_info = self._take_step(env_worker.previous_step)
File "/usr/local/lib/python3.8/dist-packages/mlagents_envs-0.24.0.dev0-py3.8.egg/mlagents_envs/timers.py", line 305, in wrapped
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/subprocess_env_manager.py", line 378, in _take_step
all_action_info[brain_name] = self.policies[brain_name].get_action(
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/policy/torch_policy.py", line 207, in get_action
run_out = self.evaluate(decision_requests, global_agent_ids)
File "/usr/local/lib/python3.8/dist-packages/mlagents_envs-0.24.0.dev0-py3.8.egg/mlagents_envs/timers.py", line 305, in wrapped
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/policy/torch_policy.py", line 173, in evaluate
action, log_probs, entropy, memories = self.sample_actions(
File "/usr/local/lib/python3.8/dist-packages/mlagents_envs-0.24.0.dev0-py3.8.egg/mlagents_envs/timers.py", line 305, in wrapped
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/policy/torch_policy.py", line 135, in sample_actions
actions, log_probs, entropies, memories = self.actor_critic.get_action_stats(
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/torch/networks.py", line 500, in get_action_stats
action, log_probs, entropies, actor_mem_out = super().get_action_stats(
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/torch/networks.py", line 303, in get_action_stats
encoding, memories = self.network_body(
File "/usr/local/lib/python3.8/dist-packages/torch-1.7.1-py3.8-linux-x86_64.egg/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/torch/networks.py", line 87, in forward
processed_obs = processor(obs_input)
File "/usr/local/lib/python3.8/dist-packages/torch-1.7.1-py3.8-linux-x86_64.egg/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/mlagents-0.24.0.dev0-py3.8.egg/mlagents/trainers/torch/encoders.py", line 270, in forward
before_out = hidden.view(batch_size, -1)
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
My guess would be that something is wrong with my camera, how can I fix it?
Regards,
RUn