RuntimeError: Class values must be smaller than num_classes.

Hi, I am trying to build a MotoGP racing game and using imitation learning to achieve my objective. I followed this video of CodeMonkey . I first created the .demo file by training it by myself. But when I try to train it using imitiation learning by running the following command:

mlagents-learn config/MotoGP.yaml --run-id=Imitation9

and then press the play button , the game kind of runs for a second or two and then stops and I get the above error. This is the error in full detail:

Connected new brain: BikerBehavior?team=0
[INFO] Hyperparameters for behavior name BikerBehavior:
        trainer_type:   ppo
        hyperparameters:
          batch_size:   10
          buffer_size:  100
          learning_rate:        0.0003
          beta: 0.0005
          epsilon:      0.2
          lambd:        0.99
          num_epoch:    3
          shared_critic:        False
          learning_rate_schedule:       linear
          beta_schedule:        constant
          epsilon_schedule:     linear
        network_settings:
          normalize:    False
          hidden_units: 128
          num_layers:   2
          vis_encode_type:      simple
          memory:       None
          goal_conditioning_type:       hyper
          deterministic:        False
        reward_signals:
          extrinsic:
            gamma:      0.99
            strength:   1.0
            network_settings:
              normalize:        False
              hidden_units:     128
              num_layers:       2
              vis_encode_type:  simple
              memory:   None
              goal_conditioning_type:   hyper
              deterministic:    False
          gail:
            gamma:      0.99
            strength:   0.5
            network_settings:
              normalize:        False
              hidden_units:     128
              num_layers:       2
              vis_encode_type:  simple
              memory:   None
              goal_conditioning_type:   hyper
              deterministic:    False
            learning_rate:      0.0003
            encoding_size:      None
            use_actions:        False
            use_vail:   False
            demo_path:  Trainer/MotoGPTrainer.demo
        init_path:      None
        keep_checkpoints:       5
        checkpoint_interval:    500000
        max_steps:      500000
        time_horizon:   64
        summary_freq:   10000
        threaded:       False
        self_play:      None
        behavioral_cloning:
          demo_path:    Trainer/MotoGPTrainer.demo
          steps:        0
          strength:     0.5
          samples_per_update:   0
          num_epoch:    None
          batch_size:   None
D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\torch_entities\utils.py:289: UserWarning: The use of `x.T` on tensors of dimension other than 2 to reverse their shape is deprecated and it will throw an error in a future release. Consider `x.mT` to transpose batches of matrices or `x.permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse the dimensions of a tensor. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:3679.)
  torch.nn.functional.one_hot(_act.T, action_size[i]).float()
[INFO] Exported results\Imitation9\BikerBehavior\BikerBehavior-128.onnx
[INFO] Copied results\Imitation9\BikerBehavior\BikerBehavior-128.onnx to results\Imitation9\BikerBehavior.onnx.
Traceback (most recent call last):
  File "C:\Users\G524\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 197, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "C:\Users\G524\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "D:\MotoGP Demo\venv\Scripts\mlagents-learn.exe\__main__.py", line 7, in <module>
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\learn.py", line 264, in main
    run_cli(parse_command_line())
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\learn.py", line 260, in run_cli
    run_training(run_seed, options, num_areas)
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\learn.py", line 136, in run_training
    tc.start_learning(env_manager)
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents_envs\timers.py", line 305, in wrapped
    return func(*args, **kwargs)
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\trainer_controller.py", line 175, in start_learning
    n_steps = self.advance(env_manager)
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents_envs\timers.py", line 305, in wrapped
    return func(*args, **kwargs)
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\trainer_controller.py", line 250, in advance
    trainer.advance()
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\trainer\rl_trainer.py", line 302, in advance
    if self._update_policy():
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\trainer\on_policy_trainer.py", line 111, in _update_policy
    update_stats = self.optimizer.bc_module.update()
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\torch_entities\components\bc\module.py", line 95, in update
    run_out = self._update_batch(mini_batch_demo, self.n_sequences)
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\torch_entities\components\bc\module.py", line 178, in _update_batch
    bc_loss = self._behavioral_cloning_loss(
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\torch_entities\components\bc\module.py", line 118, in _behavioral_cloning_loss
    one_hot_expert_actions = ModelUtils.actions_to_onehot(
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\torch_entities\utils.py", line 288, in actions_to_onehot
    onehot_branches = [
  File "D:\MotoGP Demo\venv\lib\site-packages\mlagents\trainers\torch_entities\utils.py", line 289, in <listcomp>
    torch.nn.functional.one_hot(_act.T, action_size[i]).float()
RuntimeError: Class values must be smaller than num_classes.

You can look into the .yaml file by observing the above code. I tried to read a similar problems posted by other and from there I tried experimenting by removing the behavioral_cloning: part away from the .yaml file. There is no error in the command prompt console , the game continues to stay in the play mode but the bike doesn’t move an inch. Can anyone here help me how to solve this?

Also the ML agents package has not seen any update since 2021. Why is that so?

Hi can anyone answer this question to the best of their knowledge , it been 10 days and I am waiting . May be @
jeffrey_unity538 can provide any insights