What is the math behind AnimationCurve.Evaluate?

I understand how to use animation curves in Unity, but I’m more interested in how Unity actually evaluates an animation curve at a given point. In other words, what is the math behind the function Evaluate?

The reason I ask is that I have a lot of animation data in animation curve format: time, value, in tangent, out tangent. I want to convert this data into splines like bezier curves or other functions, but I am not sure what the formula for this conversion would be.

Anyone have ideas?

If you want to know what is the exact equation behind an AnimationCurve,
you should check Runtime Curve Editor (from Unity Asset Store).
The package replicates 100% the equation by which the Animation Curve built-in editor plots the curve.

It should be something like this:

float Evaluate(float t, Keyframe keyframe0, Keyframe keyframe1)
{
	float dt = keyframe1.time - keyframe0.time;
	
	float m0 = keyframe0.outTangent * dt;
	float m1 = keyframe1.inTangent * dt;

	float t2 = t * t;
	float t3 = t2 * t;
	
	float a = 2 * t3 - 3 * t2 + 1;
	float b = t3 - 2 * t2 + t;
	float c = t3 - t2;
	float d = -2 * t3 + 3 * t2;
	
	return a * keyframe0.value + b * m0 + c * m1 + d * keyframe1.value;
}

Unity define a curve with 2 keyframes, each composed of a point and a tangent. I guess the simplest curve matching that is a third degree polynomial (a cubic function). Given the 2 points and tangents, it is possible to compute the polynomial coefficients simply by solving the following equation system:

(1)  a*p1x^3 + b*p1x^2 + c*p1x + d = p1y
(2)  a*p2x^3 + b*p2x^2 + c*p2x + d = p2y
(3)  3*a*p1x^2 + 2*b*p1x + c = tp1
(4)  3*a*p2x^2 + 2*b*p2x + c = tp2

You can solve this manually or using a computer algebra system.

This gives you:

float a = (p1x * tp1 + p1x * tp2 - p2x * tp1 - p2x * tp2 - 2 * p1y + 2 * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x);
float b = ((-p1x * p1x * tp1 - 2 * p1x * p1x * tp2 + 2 * p2x * p2x * tp1 + p2x * p2x * tp2 - p1x * p2x * tp1 + p1x * p2x * tp2 + 3 * p1x * p1y - 3 * p1x * p2y + 3 * p1y * p2x - 3 * p2x * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x));
float c = ((p1x * p1x * p1x * tp2 - p2x * p2x * p2x * tp1 - p1x * p2x * p2x * tp1 - 2 * p1x * p2x * p2x * tp2 + 2 * p1x * p1x * p2x * tp1 + p1x * p1x * p2x * tp2 - 6 * p1x * p1y * p2x + 6 * p1x * p2x * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x));
float d = ((p1x * p2x * p2x * p2x * tp1 - p1x * p1x * p2x * p2x * tp1 + p1x * p1x * p2x * p2x * tp2 - p1x * p1x * p1x * p2x * tp2 - p1y * p2x * p2x * p2x + p1x * p1x * p1x * p2y + 3 * p1x * p1y * p2x * p2x - 3 * p1x * p1x * p2x * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x));

Then, to evaluate the value:

float Evaluate(float t)
{
    return a*t*t*t + b*t*t + c*t + d;
}

I checked with Unity with the following quick and dirty code:

using UnityEngine;

[ExecuteInEditMode]
public class TestAnimCurve : MonoBehaviour {
    public AnimationCurve anim = AnimationCurve.EaseInOut(0, 0, 1, 1);
    float a;
    float b;
    float c;
    float d;
    void Update () {
        float p1x= anim.keys[0].time;
        float p1y= anim.keys[0].value;
        float tp1=anim.keys[0].outTangent;
        float p2x=anim.keys[1].time;
        float p2y= anim.keys[1].value;
        float tp2= anim.keys[1].inTangent;
        Debug.Log(p1x+ ", " + p1y+ ", " + tp1 + ", " + p2x + ", " + p2y + ", " + tp2);
        Debug.Log("Evaluate Unity: " + anim.Evaluate(0.1f) + ", " + anim.Evaluate(0.2f) + ", " + anim.Evaluate(0.3f) + ", " + anim.Evaluate(0.4f) + ", " + anim.Evaluate(0.5f) + ", " + anim.Evaluate(0.6f) + ", " + anim.Evaluate(0.76f) + ", " + anim.Evaluate(0.88f) + ", " + anim.Evaluate(0.98f));
        a = (p1x * tp1 + p1x * tp2 - p2x * tp1 - p2x * tp2 - 2 * p1y + 2 * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x);
        b = ((-p1x * p1x * tp1 - 2 * p1x * p1x * tp2 + 2 * p2x * p2x * tp1 + p2x * p2x * tp2 - p1x * p2x * tp1 + p1x * p2x * tp2 + 3 * p1x * p1y - 3 * p1x * p2y + 3 * p1y * p2x - 3 * p2x * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x));
        c = ((p1x * p1x * p1x * tp2 - p2x * p2x * p2x * tp1 - p1x * p2x * p2x * tp1 - 2 * p1x * p2x * p2x * tp2 + 2 * p1x * p1x * p2x * tp1 + p1x * p1x * p2x * tp2 - 6 * p1x * p1y * p2x + 6 * p1x * p2x * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x));
        d = ((p1x * p2x * p2x * p2x * tp1 - p1x * p1x * p2x * p2x * tp1 + p1x * p1x * p2x * p2x * tp2 - p1x * p1x * p1x * p2x * tp2 - p1y * p2x * p2x * p2x + p1x * p1x * p1x * p2y + 3 * p1x * p1y * p2x * p2x - 3 * p1x * p1x * p2x * p2y) / (p1x * p1x * p1x - p2x * p2x * p2x + 3 * p1x * p2x * p2x - 3 * p1x * p1x * p2x));
        Debug.Log("Evaluate Cubic: " + Evaluate(0.1f) + ", " + Evaluate(0.2f) + ", " + Evaluate(0.3f) + ", " + Evaluate(0.4f) + ", " + Evaluate(0.5f) + ", " + Evaluate(0.6f) + ", " + Evaluate(0.76f) + ", " + Evaluate(0.88f) + ", " + anim.Evaluate(0.98f));
    }
    float Evaluate(float t)
    {
        return a * t * t * t + b * t * t + c * t + d;
    }
  }

After modifing tangents of the animation curve, the debug messages produced by this code are:

0, 0, -4.484611, 1, 1, -10.23884
Evaluate Unity: -0.2431039, -0.1423873, 0.2018093, 0.6891449, 1.219279, 1.691871, 2.077879, 1.854902, 1.193726
Evaluate Cubic: -0.2431039, -0.1423873, 0.2018092, 0.6891448, 1.219279, 1.691871, 2.077879, 1.854902, 1.193726

So it really seams that this approach is the math behind AnimationCurve.Evaluate :wink:

AnimationCurve is a simple spline of cubic equations, where for each segment you specify the (time, value) coordinates and slope for each of two end points (the first point’s “out” “tangent”, second one’s “in”). A cubic equation is the simplest polynomial which can meet these criteria.

This is also known as a cubic Hermite spline, where the only difference is that AnimationCurve allows you to assign different slopes for each direction from a keyframe (a point), which creates discontinuities in the first derivative (sharp angles). However, this does not change the formula.

It took me some time (much more than I’d like to admit…) but I simplified the system of cubic equations for the endpoints into this form.

pd = 1/(p2x-p1x)
td = t-p1x
ta = td*pd

out(t) = (((p2s+p1s)/2 - (p2y-p1y)*pd)*ta*(t*2 + p1x - p2x*3) + (p2s-p1s)/2*(t + p1x - p2x*2))*ta + p2s*td + p1y

Isolated t to calculate coefficients in advance, providing a fast t evaluation:

pd = 1/(p2x-p1x)
td = pd*(p2s-p1s)
a = pd^2*(p2s + p1s - 2*pd*(p2y-p1y))

b = (-a*3*(p2x + p1x) + td)/2
c = p2x*(a*3*p1x + -td) + p2s
d = p1x*(a/2*p1x*(-p2x*3 + p1x) + td*(p2x + -p1x/2) + -p2s) + p1y

out(t) = t*(t^2*a + t*b + c) + d

I had the same question, was looking for a straightforward answer. Because my search query took me here and this is the closest I could find, I assume such solutions to this exact problem are not abundant, so I thought I’d share mine. I derived it because I need to emulate the same function outside of unity. Looking at the other three answers here, they seem to be correct but not simplified (trust me this is not an easy task) (Varaughe’s leaves out the evaluation of the Bezier curve he made from the AnimationCurve, as it is a well-known thing).

I tested these against AnimationCurve for correctness with a Python script which can randomize all six parameters of the cubic function:

# isolated t
def curve1(t,p1x,p2x,p1y,p2y,p1s,p2s):
    e = 1/(p2x-p1x)
    f = e*(p1s-p2s)
    a = (p1s + p2s + 2*e*(p1y-p2y))*e**2
    b = (a*3*(p2x+p1x) + f)/-2
    c = p2x*(a*3*p1x + f) + p2s
    d = p1x/2*(a*p1x*(p1x - p2x*3) + f*(p1x - p2x*2) - p2s*2) + p1y
    return t*(t**2*a + t*b + c) + d

# short form
def curve2(t,p1x,p2x,p1y,p2y,p1s,p2s):
    pd = 1/(p2x-p1x)
    td = t-p1x
    ta = td*pd
    return ((t*2 + p1x - p2x*3)*((p2s+p1s)/2 - (p2y-p1y)*pd)*ta + (t + p1x - p2x*2)*(p2s-p1s)/2)*ta + p2s*td + p1y

# Paulius
def curve_Paulius(t,p1x,p2x,p1y,p2y,p1s,p2s):
    xd = p2x-p1x
    t = (t-p1x)/xd
    return (2*t**3 - 3*t**2 + 1)*p1y + (t**3 - 2*t**2 + t)*p1s*xd + (t**3 - t**2)*p2s*xd + (-2*t**3 + 3*t**2)*p2y

def test(curve, times, curve_parameters):
    out = []
    for i in times:
        out.append(curve(i, *curve_parameters))
    return out

from random import random
rand_args = []
for i in range(4):
    rand_args.append(random()*100)
for i in range(2):
    rand_args.append(random()*2)

rand_times = []
e,f = rand_args[0:2]
points = 21
# interval count is points - 1
for i in range(points - 1):
    td = (f - e)/(points - 1)
    rand_times.append(random()*td + e + i*td)

Here is my implementation for ones who want to port it to other languages or shaders. Inludes all wrapping, exact point values and based on some of the answers here of whats happening in between points:

public class AnimationCurveDto
{
    public KeyDto[] Ranges;
    public WrapMode PreWrap;
    public WrapMode PostWrap;

    public struct KeyDto
    {
        public float a;
        public float b;
        public float c;
        public float d;
        public Vector2 t;
        public Vector2 v;
    }
    public AnimationCurveDto(AnimationCurve curve)
    {
        Ranges = new KeyDto[curve.keys.Length - 1];
        for(int i = 0; i < curve.keys.Length-1; i++)
        {
            Ranges _= Create(curve.keys*, curve.keys[i + 1]);*_

}
PreWrap = curve.preWrapMode;
PostWrap = curve.postWrapMode;
}
public float Evaluate(float t)
{
var l = Ranges[0];
var r = Ranges[Ranges.Length - 1];
if(l.t.x > t)
{
if(PreWrap == WrapMode.Clamp || PreWrap == WrapMode.ClampForever)
{
return l.v.x;
}
t = Wrap(t, PreWrap, l, r);
}
if(r.t.y <= t)
{
if (PostWrap == WrapMode.Clamp || PostWrap == WrapMode.ClampForever)
{
return r.v.y;
}
t = Wrap(t, PostWrap, l, r);
}
for (int i = 0; i < Ranges.Length; i++)
{
var o = Ranges*;*
if(o.t.x <= t && o.t.y > t)
{
return o.a * Mathf.Pow(t,3) + o.b * Mathf.Pow(t,2) + o.c * t + o.d;
}
}
if (r.t.y == t)
{
return r.v.y;
}
return 0;
}
private static float Wrap(float t, WrapMode mode, KeyDto a, KeyDto b)
{
if (mode == WrapMode.PingPong)
{
t = a.t.x + Mathf.PingPong(t - a.t.x, b.t.y - a.t.x);
}
else if (mode == WrapMode.Loop)
{
t = a.t.x + Mathf.Repeat(t - a.t.x, b.t.y - a.t.x);
}
return t;
}
private static KeyDto Create(Keyframe p1, Keyframe p2)
{
float p1x = p1.time;
float p1y = p1.value;
float tp1 = p1.outTangent;
float p2x = p2.time;
float p2y = p2.value;
float tp2 = p2.inTangent;
var result = new KeyDto();
result.t = new Vector2(p1.time, p2.time);
result.v = new Vector2(p1.value, p2.value);
if (tp1 == float.PositiveInfinity || tp1 == float.NegativeInfinity || tp2 == float.PositiveInfinity || tp2 == float.NegativeInfinity)
{
if (tp1 == float.NegativeInfinity && tp2 == float.NegativeInfinity ||
tp1 == float.NegativeInfinity && IsSimple(tp2) ||
tp2 == float.NegativeInfinity && IsSimple(tp1))
{
result.d = p2.value;
}
else
{
result.d = p1.value;
}
}
else
{
var divisor = (p1x * p1x * p1x) - (p2x * p2x * p2x) + (3 * p1x * p2x * (p2x - p1x));
result.a = ((tp1 + tp2) * (p1x - p2x) + (p2y - p1y) * 2) / divisor;
result.b = (2 * (p2x * p2x * tp1 - p1x * p1x * tp2) - p1x * p1x * tp1 + p2x * p2x * tp2 + p1x * p2x * (tp2 - tp1) + 3 * (p1x + p2x) * (p1y - p2y)) / divisor;
result.c = (p1x * p1x * p1x * tp2 - p2x * p2x * p2x * tp1 + p1x * p2x * (p1x * (2 * tp1 + tp2) - p2x * (tp1 + 2 * tp2)) + 6 * p1x * p2x * (p2y - p1y)) / divisor;
result.d = ((p1x * p2x * p2x - p1x * p1x * p2x) * (p2x * tp1 + p1x * tp2) - p1y * p2x * p2x * p2x + p1x * p1x * p1x * p2y + 3 * p1x * p2x * (p2x * p1y - p1x * p2y)) / divisor;
}
return result;
}
private static bool IsSimple(float t)
{
return t != float.NegativeInfinity && t != float.PositiveInfinity;
}
}